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INTRODUCTION

Hitney (1992) presented a method to remotely sense the refractivity structure of the
troposphere. This method allows the base of a trapping layer to be determined directly
from radio measurements. Since radio signal strength can be computed as a function of
the trapping layer base height using the Naval Ocean Systems Center Radio Physical
Optics (RPO) model, the observed signal strength may be similarly applied to the RPO
model to infer the base height.

This method has been applied to the data of a few UHF signals that were recorded in
1945 during the San Pedro-Point Loma experiment (Hitney, 1992, and Anderson, 1944).
The 40-day period of continuous radio data and meteorological measurements shows a
remarkable negative correlation between the received signal strengths and the base of the
temperature inversion. This suggests the base height of the trapping layer, usually
associated with a temperature inversion, is an important factor in influencing radio
propagation on over-the-horizon paths. Assuming horizontally homogeneous refractivity
conditions and a simple tri-linear modified refractivity profile, the RPO propagation
model is applied to the 100-MHz and 547-MHz data sets. Such applications result in
inferred base heights that compare quite well to the measured base heights, especially for
the higher frequency signal. However, the comparison of a few predictions to the
measured data set is not a satisfactory validation of the method, nor a confirmation of its
limitations. Therefore, this remote sensing technique requires some further investigations.

INVESTIGATION

An experiment has been conducted to sense signal levels of several VHF and UHF
paths along the coast of southern California. The sources of these signals are from
Automatic Terminal Information Service (ATIS) broadcasts for airports along the
southern California coast (table 1). These ATIS sources are selected such that with the

Table 1. ATIS frequencies in southern California.

MHz Latitude Longitude Airport Name Elev. (msl) Distance**

117.20 33 040.3'N 117"43.6'W El Toro MCAS 117 m 119 km
118.05 34"12.0'N 119 0 12.3'W Oxnard 13 m 148 km
119.15 34"00.9'N 118 0 27.0'W Santa Monica Mun. 53 m 186 km
120.15 3307.6'N 117016.7'W McClellan-Palomar 100 m 50 km

"125.55 3407.2'N 119007.7 W Point Mugu NAS 4 m 236 km
125.60 33048.2'N 118020.3' V Torrance Mun. 31 m 161 km
126.00 33"40.5'N 117 052.0'W John Wayne-Orange Co. 16 m 125 km
127.75 33049.0'N 11801.01W Long Beach; Daugherty 17 rn 145 km
127.80 34"25.5'N 119050.3'W Santa Barbara Mun. 3 m 308 km
133.80 33"56.5'N 118"24.4'W Los Angeles Int'l (Arn) 38 m 177 km

"135.65 33056.5'N 118 0 24.4'W Los Angeles Int'l (Dep) 38 m 177 km
267.60 33"18.1'N 117 021.3'W Camp Pendleton MCAS 24 m 70 km
268.60 33 001.4'N 118035.2'W San Clemente Is. NALF 55 m 131 km
277.20 34 007.2'N 119 0 07.2'W Point Mugu NAS 4 m 236 km
*284.20 33040.3'N 117043.6'W El Toro MCAS 117 m 119 km
384.30 33042.4'N 117 049.6'W Tustin MCAS 16 m 126 km

*Additional frequencies
*0 Distance from NOSC (32*41'N, 1170 15'W).



receiver placed at Point Loma (NOSC Building 323), the transmission paths are well
beyond the horizon and mostly over water (figure 1). There are 16 ATIS frequencies of
interest which range from 117 MI-Iz to 385 MHz. The transmitters are located from 3-
to 177-meters above mean sea-level (msl), and they formed transmission paths from
50- to 300-kn in length.

RF DATA ACQUISITION SYSTEM

At NOSC, where the radio measurement is recorded, an LP-1019BA log-periodic
antenna was mounted for vertical polarization on the roof of Building 323, at about 40 m
above msl, and pointed to the northwest (bearing 320*). From there the received RF
signal is fed through a 40-foot RG214 coaxial cable and monitored by an HP-8566B
Spectrum Analyzer. The HP-8566B's frequency range and sensitivity are fully adequate
for detecting the ATIS signals. For automatic data acquisition, the HP-8566B is connected
to an 80286 microcomputer via an IEEE 488 bus. A National Instrument GPIB-II
IEEE 488 interface board is used to provide software control of the IEEE bus with the
microcomputer.

A simple C-Language program (ATIS.C) was developed to monitor the received ATIS
signals and to record the signal levels. The program typically sets the HP-8566B's RF
input attenuation at 0 dB, center frequency at an ATIS frequency, the frequency span at
10 kHz, with resolution bandwidth at 100 Hz, and video bandwidth at 300 Hz. The
analyzer is also programmed to perform video averaging of five sweeps for each signal, to
optimize signal detection. For each ATIS signal, its frequency, signal-to-noise ratio
(referenced to 100 Hz bandwidth), and propagation loss are recorded with an effective
sample time of 15 seconds. For a one-way transmission system, the propagation loss (in
dB) is

L = Pt + G1 - Pr + Gr + G,

where Pt is the power transmitted, Gt and Gr are transmitter and receiver antenna
gains, Pr is the signal power received, and G, is the coax gain measured from the
receiver antenna to the RF input of the analyzer. The typical ATIS antenna is omni-
directional and radiates at about 10 watts, making the sum of the first two terms equal
to 40 dBm. The high directive gain of the LP-1019BA receiver antenna is about 8 dB,
and the cable gain G, was measured as -1.0 to -2.0 dB. (See table 2.)

In operation, the above measurements are automatically stored on disk files as ASCII
text format, for further processing. The measurements are recorded 24 hours per day, at
intervals of 15 minutes. The recording began in late September 1991 and is ongoing.
However, there are gaps in the data, due to software and hardware failures that were
eventually corrected. Table 3 shows the time periods in which measurements were made.
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Table 2. RF system constants.

ATIS Freq Tx Power Coax Gain
(MHz) (dBm) G, (dB)

117.20 40.0 -1.00
118.05 40.0 -1.04
119.15 40.0 -1.03
120.15 39.8 -1.03
121.15 40.0 -1.04
125.55 36.0 -1.06
125.60 40.0 -1.06
126.00 40.0 -1.06
127.75 40.0 -1.06
127.80 40.0 -1.06
133.80 40.0 -1.10
267.60 39.0 -1.62
268.60 40.0 -1.62
277.20 36.0 -1.64
284.20 40.0 -1.66
384.30 36.0 -1.99

ATIS transmitter antenna gain 0 dBi
(omni)
Receiver antenna gain 8 dB

Table 3. Periods of 1991 ATIS measurements.

Start End

September 30 October 11
October 23 November 14

November 19 December 9

DATA ANALYSIS

As a first step in analyzing the recorded data, we have written a program
(PLTATIS.BAS) to graphically present the time-series of observed ATIS signal-to-noise
ratio, propagation loss, propagation factor (relative to free space), and inferred trapping
layer base height. Figure 2 shows some results from the November 1991 measurement
period, indicating the typical variation in signal strengths (associated with the change in
trapping layer base height). Notice there are limits for the observed propagation factors
(when signal levels are below the noise level), that will also limit the inferred base
heights. Determining the trapping layer base height from radio measurements is quite
intricate. First, for each of the ATIS paths, the propagation factor must be computed as a
function of trapping-layer base height using the RPO propagation model (RPO program).
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ATIS 1991: RI Propagation Data
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Figure 2. Signal strengths.
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Horizontal homogeneity and a simple tri-linear modified refractivity profile, where trap-
ping layer characteristics are derived from historical statistics of the area, are assumed.
The tri-linear profile is constructed with a median trapping layer strength of 30 M-units
and a thickness of 130 meters. For every value of trapping-layer base heights (0 to
1400 in), the propagation factor calculated by RPO must be read off manually using
the EREPS PROPR program. The RPO results for each ATIS frequency are plotted in
figures 3a through 3o, and shows propagation factor versus the base of the trapping
layer. The line in figures 3a through o is an approximate fit through the first several
data points (at base heights lower than 800 m); apparently, there is substantial vari-
ation between the data points and especially for the higher trapping layer base heights.
The linear regression can be characterized by the slope and the y-intercept of the line.
These two quantities are tabulated in table 4 and are used (by PLTATIS.BAS) to com-
pute the inferred base heights from observed propagation factors.

Table 4. Linear approximation of propagation factor versus
trapping layer base height for ATIS transmissions.

Frequency Elevation Range* Prop. Factor AP.F./ABht.
(MHz) (M) (kin) (dB) @0 Bht. (dB/m)

117.20 117 119 14.80 -0.078
118.05 13 148 9.00 -0.160
119.15 53 186 5.40 -0.076
120.15 100 50 -0.40 -0.054
125.60 31 161 -1.10 -0.063
126.00 16 125 -5.20 -0.060
127.75 17 145 -4.30 -0.063
127.80 3 308 -0.80 -0.123
133.80 38 177 1.60 -0.068
135.65 38 177 2.10 -0.069
267.80 24 70 6.21 -0.091
268.60 55 131 12.59 -0.065
277.20 4 236 3.40 -0.182
284.20 117 119 12.38 -0.072
384.30 16 126 9.33 -0.072

*Distance from receiver (40 m above msl) at NOSC (32.7"N, 117.25"W)
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RESULTS

Typical time-series plots of inferred base heights, figure 4, show good correlation of

temporal variation; ATIS sources near each other give almost the same inferred trapping

base heights, especially in the Los Angeles area. However, the inferred base heights also

vary extensively for some of the other paths. Such disagreement is perhaps a result of the

uncertainty in linear regression of the computed propagation factors versus trapping base

heights, because there are substantial deviation errors in the linear approximation.

Furthermore, as shown in scatter plots of figure 5, observed trapping base heights

generally do not agree with the base heights inferred from the radio data, nor do they

agree with each other. This is probably an indication that the assumption of horizontal

homogeniety does not always hold.

In any case, additional measured data of base heights are required to verify the extent

of any nonhomogeneous condition and to explain the discrepancies between prediction

and observation of trapping layer base heights. Thus far in this experiment, the measured

data available are from the radiosonde observations of a few World Meteorological

Organization (WMO) stations in southern California. Since most of these stations are

located away from the transmission paths of interest and their radiosonde observations

are sporadically reported, the available data are not reliable or useful.
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CONCLUSIONS

A remote sensing experiment has been established to examine the method of
determining base heights of a trapping layer directly from VHF and UAHF radio
measurements. The setup of this experiment is relatively simple and convenient; it uses
existing radio broadcasts along the coast of southern California as sources of signal
propagation and requires minimal equipment to record the signal strengths of such
transmissions.

However, the technique of processing the recorded data to infer trapping layer base
heights is somewhat uncertain. The linear formulation of propagation factor as a function
of base height from the RPO propagation model is only an approximation; hence, errors
are expected in the inferred base heights. In addition, considerations of horizontal
homogeneity may be invalid. Further investigation into these problems may provide
improvement for the technique. Nevertheless, the experiment shows some strong correla-
tions between the observed signal strengths as well as the inferred trapping layer base
heights of the various radio paths, indicating the height of the trapping layer is an
important factor in controlling radio propagation on over-the-horizon paths.

16



ATIS 1991: 11 Propagation Data
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ATIS 1991: R lpopagation Data
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